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Constrained State Estimation for Nonlinear
Discrete-Time Systems: Stability and
Moving Horizon Approximations

Christopher V. Rao, James B. Rawlings, and David Q. Mayne

Abstract—State estimator design for a nonlinear discrete-time state estimate is determined online by solving a finite horizon
system is a challenging problem, further complicated when addi- state estimation problem. As new measurements become avail-
tional physical insight is available in the form of inequality con-  gpja the old measurements are discarded from the estimation
straints on the state variables and disturbances. One strategy for . d, d the finite hori tat timati bl .
constrained state estimation is to employ online optimization using window, an e _|n| € horizon S ale estmation problem 1S
a moving horizon approximation. In this article we propose a gen- resolved to determine the new estimate of the state. The method
eral theory for constrained moving horizon estimation. Sufficient is optimization based, so MHE can handle explicitly nonlinear
conditions for asymptotic and bounded stability are established. systems and inequality constraints on the decision variables.
We apply these results to develop a practical algorithm for con- = *, thig paper, we investigate online optimization strategies for
strained linear and nonlinear state estimation. Examples are used - . . -

estimating the state of systems modeled by a nonlinear differ-

toillustrate the benefits of constrained state estimation. Our frame- -
work is deterministic. ence equation of the form

Index Terms—Constraints, model predictive control (MPC),

moving horizon estimation (MHE), optimization, state estimation. 1 =fr(we, wr)

Yk =hi(wr) + v (1)

|. INTRODUCTION where it is known that the states and disturbances satisfy the

UR problem concerns the design of constrained state &0wing constraints:

timators for nonlinear discrete-time systems, where one
possesses additional insights in the form of general inequality
constraints on the state variables and disturbances. ConStre\Wésassume, for alt > 0, the functionsfy, : Xy x Wy — Xx
are typically used to model bounded disturbances, though tr}jﬁydhk . X, — RP and the set&, C R", W, C R™, and
are also used to correct for model error by bounding the Sta{. - Rrr are closed with) cW, ando €V, T
While many powerful strategies exist for estimating the state o Let = (
nonlinear discrete-time systems, these strategies do not addgﬁsmm
the issue of constraints.

T € X wi € Wi v € Vg

k;z,l,{w;}) denote the solution of the system (1)
k when the initial state i at time/ and the input

disturbance sequences {sv;}5_,. When we consider the

The constrained state estimation problem can be refom}Héturbance free response of the system, fey,} = {0}
lated as a series of optimal control problems (cf. [1] and [2]l;e se the following notational simplificatiom(fk; z,1). Let

Solving the optimal control problems, however, is computa- kizl, {w;}) = hi(e(k; 21, {w;})) denote the output
(R ) J L (R ) J

tionally demanding, because the problem dimension grofs,nse of the system (1) at timevhen the initial state is at
put disturbance sequenceéd@};?:,. We use

with time as more data are processed. One method to red ff 1 and the in
mplificationy(k; z,1) := hi(x(k; 2,1)) for the

the computational burden is to bound the size of the estimati% notational si
problem by employing a moving horizon approximationyisymance free output response of the system. Note the dif-
Moving horizon approximations have been used successf ence betweeny, andy(k; z, I, {w;}). The vectory, denotes

to develop stabilizing control laws for constrained nonline%e observed output at timie and the vectow(k; , 1, {w;})
1 1 1 1 b Y J
systems (cf. [3]). In moving horizon estimation (MHE), th&yenqtes the predicted output at tiserhen the initial condition

at timel is z and the disturbance sequencéis; }*_;.
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chooses an exact model of the plant and, separately, the chaimobtained recursively, the online solution®Bf(7") is imprac-
teristics of the disturbances, such as boundedness, or thattitel because the computational burden increases with time. To
disturbances are independent and identically distributed witiake the problem tractable, we need to bound the problem size.
known mean and variance. The properties of the model and dBre strategy to reduc®; (7') to a fixed-dimension optimal
turbances are distinct. State constraints, on the other hand, @amntrol problem is to employ a moving horizon approximation.
relate the disturbances with the state and may lead to acausalitylike the full-information problem, MHE does not estimate
While not always theoretically satisfying, state constraints malye full-state sequencr,}’_,. Rather, MHE estimates the
be appealing to the engineer. The issues regarding state dowmAcated sequencr,}i_,_ . The key to preserving sta-
straints have not been resolved completely. For further discimlity and performance is how one approximately summarizes

sion, the reader is directed to [4]. the past data.
We formulate the constrained estimation problem;for 0, Consider again the probled, (7). We can arrange the ob-
as the solution to the following optimal control problem: jective function by breaking the time interval into two pieces as
. follows:
P(T): o% _—
= IIliIlT_l {(DT(J?O? {wk}) : (1;07 {wk}) € QT} (I>T(:v07 {’U}k}) = Z Lk(wbvk)
zo,{we};, 5
k=T-N
where the objective function is defined by T—-N-1
_— + Z Lk(wk./vk) + F(:Eo)
(o, {wi}) = Y Li(wn, vi) + (o) o
o Because we use a state-variable description of the system, the
uantit
the constraint set is defined by the equation shown at the bottgm y
of the page, andy, := y, — y(k;z0,0,{w;}). We assume T-1
the stage cost functiofi;, : W, x Vi, — Rx¢ forallk > 0 Z Li(we, vr)
and the initial penalty’ : Xo — R>o. The initial penaltyl’(-) k=T-N

summarizes the prior information at time= 0 and satisfies depends only on the state:y
['(z) = 0, wherezg € Xy is theg pr.iori most Iikely value of {wi,vx}T=) . Exploiing the relation using forward
wo, andl'(z) > 0 for z # Zo; The initial penaltyl’(-) is part of 4y namic’ programming, we can establish the equivalence
the data of the state estimation problem. Typically between a full information problem and an estimation problem
I(z) = (x — :ﬁ(])Tﬁ(;l(x — %0) with a fixed-size estimation window.

Consider the reachable set of states at tingenerated by a
where the matrifI, is symmetric positive definite. In this case feasible initial conditionz, and disturbance sequengey, } ;-
the given datdz, ITy) determined’(-). The solution taP; (1) Ry = {a(r520,0, {w;}) : (w0, {w;}) € 0}

at time’ is the pair
where(), is defined below. We define tharival cost! at time

~ and the sequences

A ~ T-—1
(Forr—1s {tbeir—1}x o) 7 and for the state € R, as
and that optimal pair yields an estimaf;r_,}7_, of the Z.(2):= min {® (o, {wi))
actual sequencgry, }; the sequenciyr_1 }7_, isthe solution wofun )i
of (1) with the initial statet, -, attimek = 0 and disturbance (w0, {wr}) € Q) x(7320,0, {w;}) = 2} .

sequencd iy, r_1 }; 4, i.e., . _
| h=0 It follows that Z,(-) = T'(-). Arrival cost is a fundamental con-
Tpr—1 = 2(k; Tojr—1,0, {Wjjr-1})- cept in MHE, because we can reformuld&gT'), for T > N,

L L . R . as the following equivalent optimal control problem:

To simplify notationz; := ;;_;, wherezo_; = Zo.
We refer to the formulationP, (T) as the full information i ) =1

problem and:;, as the full information estimate af;,, because P{(T) &7 = B {wlr}%lll Z L (wg, vg)
all of the available information{y;}7_, is processed. The R Tk=T -~ Lk=T-N
problemP; (T) hasT stages, so the computational complexity Y Zr_n(2) : z € Rr-n }
scales at least linearly witd. Unless the process is linear, (2, {wi}) € QF
unconstrained, and the cost functions are quadratic, in whichoer researchers have used the teast to come(cf. [5]) or cost to arrive
case the optimal estimator is the Kalman filter and the solutiat. [6]).

Jj(k;.’lj'(]?(]?{wj}) EX/67 kZOT
Qr = (‘TO-/{wk}): wy € Wy, k:07"'7(T_1>
ve = Y — y(k; 20,0, {w;}) € Vi, k=0,...,(T-1)
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where the constraint set is defined the equation shown at tieice oféj(-) by penalizing deviation away from the past esti-
bottom of the page, and, := y, — y(k;z,T — N,{wr}). matez; in accordance with our confidence in the estimate. Be-
WhenT < N, the optimal control problen®; (T') is defined cause this choice is an approximation, we need to ensure that es-
to be P, (T). Itis relatively straightforward to demonstrate théimator divergence does not result. In examples not shown here
equivalence of the solutions 18 (7") and P/ (T") using forward (see [4]), we demonstrate how poor approximations of the ar-

dynamic programming (cf. [7]). rival cost may lead to estimator divergence. In Section Ill, we
Optimality guarantee€r(z) > @4 for all z € Ry and discuss the stability implications of approximate representations
Zr(zr) = @%. We can view, therefore, the arrival cosbf the arrival cost.

as an equivalent statistic [8] for summarizing the past dataWe formulate, forl’ > N, the moving horizon approxima-

{vrts - “ ! not explicitly accounted for in the objective func-tion to the full information estimation problem, or MHE, as the
tion of Pl(T). The arrival cost serves as an equivalent statistiollowing optimal control problem:
by penalizing the deviation ofr_x away fromzr_ . If we _—
have high (low) conflt_jence in the optimal Aestlmaft@_N, Py(T) by = min Z Li(wg, vg)
then the cost of choosingr_n far away fromzr_y is large w2 WS
(small). .
For the majority of systems, we do not possess algebraic ex- +2r_n(2) : (2, {ur}) € OF }

pressions for the arrival cost. Notable exceptions are uncon-
strained linear systems with quadratic objectives, where the #éierevy, := y — y(k; 2,7 — N, {w;}) andZ; : X; — R for
timate; is now the standard Kalman estimate of the sigte all j > 0. The moving horizon cosbr apprOX|matesI>* by

Assume the functiong, (-) andh,(-) are defined by replacing the (uncomputable) arrival cdst_ v (-) with an ap-
proximationgT_N(-) and removing the constraiate Ry_ .
Je(@,w) = Agz + Grw  hi(z) := Crw We chooseZ(-) = I'(-). WhenT < N, the optimal control

problemP»(T) is defined to baDl( ) The solution taP(T")

d the st Itiefs, (- defined b :
and the stage penaltids(-) are defined by attimeT is the pair(z*, {w,‘;i}T‘ Jioi N) which, when used

Li(w,v) == wT Qi 'w + vT R v as data in the system (1), yiel@syy | }{_r_y. i-€.,
where the matrice®, and R, are symmetric positive definite. jmh (k T_N, { mh })
For this case, the initial penalty is defined as jro = (k2 Wjr-1
P(2) i= (2 — d0) T (2 — i) For simplicity, " := #32_, wherei gt | = &.
. o One strategy to approximate the arrival cdst(-) is to em-
and the arrival cost is given by ploy a first-order Taylor series approximation of the model (1)
mh
Zi(2) = (2 — i )TH (z—ij) + @ @ around the estimated trajectofy}: o- This strategy yields

an extended Kalman filter covarlance update formula for con-
assuming the matriid; is invertible. The matrix sequendgl;}  structingZr(-). Suppose the model functiorfs(-) and /. (-)

is obtained by solving the matrix Riccati equation and the cost function(-) are sufficiently smooth and
i = G,;Q,;G + A1 AT (x) == (¢ — #0) T, (z — do).
—A]HJCJT(RJ +GILCT) T GIGAT () | o
with t_he initial cond_iti_on_Ho = . One optains this result by_ A O fu(w,0) o O fe (4P )
deriving the deterministic Kalman filter using forward dynamic A k T
programming (cf. [1]). T w=0
When the system is nonlinear or constrained, an algebraic ex- ¢, .— Ohy ()
pression for the arrival cost rarely exists, yet we require one O |z
to successfully implement the estimator. Ideally, we want ttg?e he li 44 ¢ (1) and
moving horizon estimate as close as possible to the full infdf€"Ote the linearized dynamics of (1) an
mation estimate. One solution is to formulate MHE as the so- . 92L, (0, v) 8Ly, (w,v)
lution to anumerically .tracatable though approximate version of fx = T ovouT . Np = T owouT o amh
P{(T). An approximationZ;(-) of the arrival costZ;(-) may ) T T
be used to account for the data not included in the estimation;,-1 ._ 0" Ly (w, v)
window. The past data are accounted for approximately with our F dwow™ w=0, &b
z(k;z, T — N,{w;}) € X, k=(T-N),...,T
OF =< (2, {w}) : wy, € Wy, k=(T—-N),....,(T—1

)
ve =yr —y(k;2, T — N, {w;}) € Vi, k=(T—-N),...,(T—-1)
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denote the linearized stage penaltlgg-), then, if we assume from drifting sensor gains. Alessandi al. [38] investigated

for simplicity N, = 0, we approximate the arrival cost as MHE for systems with bounded measurement error and devel-
oped error bounds on the resulting estimates. Our results are

éT(Z) — (Z — ;igh)Tn;l (Z — ;i-%h) + & novel in that we investigate the stability properties of MHE

under general constraints on the state and disturbances.

assuming the matrik - is invertible, where the matrix sequence The remainder of the paper is organized as follows. Section Il

{I1;} is obtained by solving the matrix Riccati (3) subject téhtroduces the notation, definitions, and basic assumptions nec-

the initial conditionII, = TI,. This result is equivalent to the €ssary for establishing stability. We establish sufficient condi-

covariance update formula for the extended Kalman filter. S&ens for the asymptotic and bounded stability of MHE and pro-

[2] for further details. pose a prototype algorithm for MHE in Section Ill. We conclude
MHE is a practical strategy to handle the computational dif? Section IV by illustrating the effectiveness of MHE for con-

ficulties associated with optimization based estimation, and, $fsained estimation with numerical examples. Extensions of the

a consequence, many authors have explored different issuekefHlts presented, including discussions of duality and subopti-

MHE. The first application of MHE for nonlinear systems waghality, are available in [4].

the work of Janget al. [9]. Their strategy ignores disturbances

and constraints and attempts to estimate only the initial state [l. NOTATION, DEFINITIONS, AND BASIC ASSUMPTIONS

of the system. Thomas [10] and Kwaet al. [11] discussed The Cartesian product)_, A of a setAl is denoted byA".

earlier moving horizon strategies for unconstrained linear SY%e use the symbd]- || to denote any vector norm RY* (where

tems. Limited memory and adaptive filters for linear systempge gimensiom, follows from context). LeR>o denote the non-
are analogous to MHE, because only a fixed window of d gative real numbers, at{R") denote the space of lower

is considered (see [2] for a discussion of limited memory filz mj-continuous functions that map frd# to R. Fore > 0
ters). Many researchers in the process systems area exte ed {« : ||z|| < ¢}. For notational simplicity, we make that
the work of Janget al. Bequetteet al. [12], [13] investigated following defi 't'_ N 0
moving hori trateqies for state estimat logical extaoiowing definition: Ok = Orjp—r . .

g horizon strategies for State estimation as a logical xteny .qnition 2.1: A function o : Rs>¢ — R>g is aK-function
sion of model predictive control. Edgar and coworkers [14], [1%} it is continuous, strictly monotone incréasing(x) > 0 for
investigated moving horizon strategies for nonlinear data re:g—;é 0, a(0) = 0 é\ndlim () = 0o
onciliation. Biegleret al. [16]-[18] investigated statistical and Thr;)ughoutth'is paperxwzouse the following elementary prop-
numerical issues related to optimization-based nonlinear d '

S : . lfies of K-functions.
reconciliation. Marquardst al.[19], [20] discussed multi-scale Fact 2.2: Suppose(-) is a K-function. Then, the function

strategies for MHE and the benefits of incorporating constram&sl . Rso — R is a K-function [39].

in estimation. Bemporagt al. [21] discussed the application Fact 2.3: The space of K-functions is closed under addition,

of MHE to hybrid systems. Gesthuisen and Engell [22] dl%omposition, and positive scalar multiplication. For example, if

cussed the application of MHE to a pilot-scale polymerization$) and(.) are K-functions, then o 3(-), a(-) + B(-), ca(-)

reactor and Russo and Young [23] discussed the applicat% ¢ > 0 are K-functions
. To establish existence and stability, we require the following

of MHE to an industrial polymerization process at the Exxon
Chemical Company. Because MHE is formulated as an Optt)'Bservability condition
mization problem, it is possible to handle explicitly inequality Definition 2.4: A system isuniformly observable if there

constraints. Robertson and Lee [24]-[26] have investigated t@%sts a positive integel, and a K-functiona(-) such that for
probabilistic interpretation of constraints in estimation. Muskgny two states; andz, °

and Rawlings [27], [28] derived some preliminary conditions
for the stability of state estimation with inequality constraints. No—1
Tyler and Morari [29], [30] demonstrated how constraints may ¢(||z; — z]|) < Z ly(k + ji 21, k) — y(k + §: 22, k)|
result in instability for nonminimum phase systems. j=0

In parallel to the research done in process systems, uncon-
strained MHE was investigated also by researchers in automa@eall & > 0.
control. Ling and Lim [31] and Kworet al. [32], [33] investi- I order to guarantee the problefig(T’) andP»(T) are well
gated the MHE for linear systems. Zimmer [34] investigated dtPsed, we require that the model (1), stage cost funcfiqis,
unconstrained MHE strategy for nonlinear systems similar &d initial penaltyl’(-) satisfy the following conditions.
the approach of Jang and coworkers [9] and derived conditiong®0) The functionsfy(-) andh(-) are Lipschitz continuous
for stability using fixed point theorems. Moraal and Grizzle [35] all of their arguments with constants andc;, respectively
also derived conditions for stability for nonlinear MHE usindor all & > 0.
fixed point theorems. However, Moraal and Grizzle [35] for- AL)Li(-) € C(W), x Vj,) forall k > 0 andI'(-) € C(Xo).
mulated the estimation problem as the solution to a set of algeA2) There exist K-functiong(-) and~(-) such that
braic equations. Michalska and Mayne [36] investigated an un-
constrained MHE strategy for nonlinear systems similar to the n([[(w, v)|) < Li(w,v) < y([|(w,v)]])
approach of Jangt al. [9] and derived conditions for stability n(l|lz — zo||) < T(x) < v(||lz — Zol|)
using Lyapunov arguments. Vincent and Khargonekar [37] in-
vestigated unconstrained MHE for a class of systems arisifig all (w,v) € (W x Vi), 2 € Xo, £9 € Xo, andk > 0.
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AssumptionA0) is satisfied if the functiongy.(-) andhg(-) Ideally the approximate arrival coﬂ%() is equal to the ar-
are twice differentiable. Assumptioddl) andA?2) are satisfied rival costZ;(-). With the notable exception of the unconstrained
if the stage cost functionby(-) and the initial penaltf’(-) are linear quadratic problem (i.e., the Kalman filter), closed-form
positive definite quadratic functions. expressions for the arrival cost are generally unavailable. To

We need also to impose similar conditions on the approxguarantee stability, however, we do not need to construct the ar-
mate arrival cosﬁk(-). However, unlike the initial penalty, the rival cost, but rather require instead that the approximate arrival
minimal value of the arrival cost is greater than zero (recaibst satisfies the following condition.

Ze(z) > & for all z € X with Z,(i) = &;) and the ap-  C2) Let

proximate arrivalz, (z) may not be bounded below Hjy|| for )
reasons that become apparent in Section Ill. We require instead RY = { z(m;2,7 — N, {w}) : (2, {wi}) € OV}
Z,(-) satisfies the following condition.

C1) There exist K-functiorfy(-) such that whereRY = R, for < N. For a horizon lengtiV, any time
7 > N, and anyp € RY, the approximate arrival cost, (-)
0 < Zp(z) — &p < 7(||2 — &8 satisfies the inequality

for all z € X7, andT > 0. . . 1
The following technical lemma follows from the definition of £+ (P) < B {wﬁ}llril Z Lo (wi, vie)
observability and definitions previously given. k=N L k=r—N

Lemma 2.5: SupposeA0)-A2) are true and (1) is uniformly 42 () : (2, {wi}) € QF, } )
observable. If the exists positive constafitsandé,, such that T x(t;2,7 — N, {w;}) =p
W, C Bs,, andV, C B;, forall k, then, forallvV > N,, there R
exists a K-functiord(-) such that subject to the initial conditior£(-) = I'(-). Forr < N, the

approximate arrival cosg. (-) satisfies instead the inequality
| — 2] Z:(1) < Z:().
T-1 If one views arrival cost as an equivalent statistic for the data,
<46 (H ({ Z Lk(wle,ﬁHTl)} s Ows 61,> H) then the inequality (5) in conditio@2) states that the approx-
k=T—N imate arrival cost should not add additional “information” not

specified in the data. Loosely speaking, we say a positive func-
tion a(-) contains more information than another positive func-
tion b(-) if a(z) > b(z) for all = of interest. If the inequality
(5) were strict, then conditio@2) would state there should be
some “forgetting” in the estimator.

Remark 3.1: A simple strategy to satisfy conditidd2) is to

forT >Nandallie {T—N,T-N+1,...,T}
Proof: The proof is given in Appendix A. ]
To guarantee that a solution exists to eitfte(T") or P»(T),
we require that the feasible region is nonempty.
A3) There exists an initial conditiom., disturbance se-

quence{wy)oc 172y such that, for alk > 0, (wojc; {wiriec}) € define for timer the approximate arrival cost & (-) := ®,.

. ) . ) The inequality (5) is satisfied by definition: optimality &% (7)

. _To account'fpr (;onstra|nts, we have modified slightly the de&'uarantees that the optimal cdst satisfies the inequality (5)

inition of stability in an analogous manner to [40]. for all p € RY. This construction was employed by Muske
Definition 2.6: An estimator is amsymptotically stable 0b- - 54 Rawiings [28] to generate a stable nonlinear MHE. Without

server for the system constraints, this choice yields a deadbeat observer.

Remark 3.2:1f we choose

Trr1 = fr(¥r,0) Yy = ha(wr) (4)

~mh T - 5.m 0
if, for every initial conditionz, such that:(k; zo,0) € X;, for Zr(2) = (2 —a7") T7 (2 - @) + @
all k > 0 and every > 0, there corresponds a number> 0
and a positive integel such that if|zo —20|| < § andzg € Xo,
then||z(T;zo,0) — @7|| < eforall T > T. Furthermore, for

all zo9 € Xo, T — :I?(T; .170,0) asT — oo.

where the sequend@l, } is obtained by solving the matrix Ric-
cati (3) subject to the initial conditiori, = 1I,,, then condition
C2)is satisfied when we consider linear systems with quadratic
objectives and convex constraints. The proof of this claim is
given in [4].
We begin by providing sufficient conditions for the existence
In this section we derive sufficient conditions for asymptotiof a solution toP»(T').
and bounded stability. We begin by stating conditions on the ap-Proposition 3.3: If assumption®.0)-A3) hold, the sequence
proximate arrival cosﬁj(-) sufficient to guarantee the stability{ﬁj(~)} satisfies conditiorC1), the system (4) is uniformly ob-
of MHE. We proceed to derive conditions for the existence ofservable, andvV > N,, then a solution exists t&,(7") for all
solution toP,(7T'), and we then establish stability. For most nong, € X, and7T > 0.
linear systems the approximate arrival costs are unable to satisfy Proof: The proof is given in Appendix B. O
a priori the stability condition. We then present an algorithm for In the following proposition, we state our stability result
constrained MHE that relaxes the conditions on the approximdte MHE. Stability is established by demonstrating that the
arrival costs. We conclude the section by establishing boun(mquencéék} is nondecreasing and bounded above uniformly
stability in the presence of bounded noise. for k > 0 by the initial estimation errojfzo — Zo||.

IIl. STABILITY
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Proposition 3.4: If assumption®\0)—A3) hold, the sequence  To prove stability, let > 0 and choose > 0 as specified by
{2]»(-)} satisfies condition€€1) and C2), system (1) is uni- Lemma 2.5 (withW, = {0}, V. = {0}, andi = T') such that
formly observable, and/ > N,, then, for allzy € Xo, MHE is  if
an asymptotically stable observer for the system (4). To1

Proof: We first prove convergence by demonstrating that mh  ~mh
Y(llzo — Zol|), wherey(-) is defined inA2), is a uniform upper Z L (wle L Ok~ 1) e
bound for®,. Recallzy denotes the initial condition of (4).
Proposition 3.3 guarantees an optimal solution exists fdr all then||z(T'; zo,0) — 232%|| < e for all T > N,. If we choose
0 andzy € Xo. AssumptionA2) and conditionC1) guarantee, 6 > 0 such thaty < v~1(p) (the existence of~!(-) follows

k=T-N

forall T > N, from Fact 2.2 ), then we obtain the following inequality for all
T>N > N,:
T-1
by — br_y > Li (oo, ). ©) = .
k;N kT—1> OkjT 1 ~(8) > D(xo) > Z (wle N}kl% 1)

We proceed using an induction argument. Fox N, assump- + Zr_ (m?“N‘T 1)
tion A3), optimality, and conditiorC2) imply 1
> S L (s o)

k=T—-N

Y(|zo — Zol]) >I'(z0) k(Whoos Vkjoo) + I'(Z0]o0)

”M'

Hence, if the initial estimation errdfzy — &o|| < 4, then the
> Zp (07|00 ) 2 Zp(27)00)- estimation error

N . ) (T 20, 0) — & < e
Condition C1) guaranteeZr(rr|.) > ®r and, therefore,

v(||o — Zo||) > ®r. Let us now assum&r_n(z7_njeo) > forallT > N as claimed. O
Zr_n(27-nN|s0) for the induction argument. Utilizing the op-  When the system dynamics are nonlinear, we are unable in
timality principle, we have, for all’ > N general to construct an approximate arrival cost that satisfies
conditionC2) with the exception of the obvious choig&-(-) =
Y(|lzo = ol]) ®1. As the proof of Proposition 3.4 demonstrates, condiG@n
T—1 is sufficient to guaranteg(||xo — Zol|) is a uniform upper bound
> min { Z k(Wi v) + 21 n(2): to the optimal costb, for all & > 0. While global satisfac-
2wy ooy Lperon tion of the inequality (5) inC2) is ideal, we may circumvent the
2 € Ryn, (2, {wi}) € OF issue by explicitly ensuring(-) is a uniform bound in nominal
application. Suppose the sequence of approximate arrival costs
#(T;2,T = N, {w;}) = l‘Too} {Z,())}, satisfies conditiorC1). The purpose of condition
C2)is to ensure the sequen{;éj(xﬂoo)} is monotone nonin-
= Zr(27)-), (by optimality) creasing [seé3)]
T-1
) N R T—1
> z.{w?}lgll { Z YLk(’lUk-/Uk)‘FZTfN(Z)- Zr(sr)0) £ min { Z Ly (wy, i)
) k=T-N \k=T—N N z{wr} Zr N EeT—N
(2, {we}) € Qp + Zr_n(2) : (2, {w}) € QY
ZL’(T;Z7T—N,{’UJ]'}):£L’TOO} a(T;2,T — N, {w;})
> Zp(27).)- (by the induction assumptioB2). = oo }
Condition C1) guaranteegT(a,T‘oo) > &, foral 7 > 0. Z 1 (Whjoos Vkjoo)
The sequencéd, }, therefore, is monotone nondecreasing and k=T—N
bounded above by(||zo — Zo]|). Hence, it is convergent, and + gT_N(xT_N‘OO)_ @)

the partial sum
Rather than rely on the general structure of the sequence

T-1 i . {2;’]»(-)} to satisfy the inequality (7), we may force the sequence
Z Ly (w;g;T‘ 10 O 1) —0 {Zj(7j)} to be monotone nonincreasing explicitly by
k=T-N scaling the approximate arrival costs
asT — oo, because the summation in (6) is nonnegative. 2].(.) — B (ﬁj(.) — i)j) + i)j

Lemma 2.5 (withW,, = {0}, Vi, = {0}, and: = T') guarantees
the estimation errofz(T’; 7o, 0) — 2521|| — 0 as claimed. whereg; € [0, 1].



252 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

If we knew the sequencer;|.. } 3=, defined inA3), thenen- 6. Solve  P(7) and obtain  #r and &y
forcing the inequality (7) is easy. It is sufficient to scalg(-) Step 2 Let T« T +1. Go to Step 1.
such that the inequality (7) is satisfied. The problem is that we

rarely know of a sequence satisfyiAg) a priori without first  \ye have constructed stable variants of the proposed estima-
solving a full information estimation problem. However, to sakjq aigorithm including suboptimal algorithms, where global
isfy the inequality (7) at timé”, we need only to know the last gqtions to the associated optimal control problem are not nec-

N elements of the S_eq“e”@_klopvwk\oo}f:_%—zv- Even this ogsary. The interested reader is directed to [4].

|nfqrmat|0n is unavailable priori, thou_gh we may _obtam it Remark 3.5 If we choose

online. What we need to generate online is a feasible state se-

quence{z, w)}F_L_ thatis bounded by the initial estima- Zi(x) = (x — ;)"0 Yz — ;) + b,

tion error in nominal application. We can generate this feasible

sequence usin@T_N(-) = &7_y. Recall from Remark 3.1 where the matrixII"! is symmetric positive semi-def-

that this choice for the approximate arrival cost yields a stahlgte, then C1) is automatically satisfied; lety(-) =

constrained observer. Once we have a feasible sequence, we(tan A max (IT71))[|(1)]|%.

scaleﬁT(-) such that it satisfies (7). The stability of the proposed algorithm relies on the stability
Consider the MHE problem where we chodsg(-) = &7. of the estimator defined bis(7'). We know from Proposition

We formulate this estimation problem as the following optim&.4 that|| 3. — (T'; zo, 0)|| — 0 asT — oco. More importantly,

control problera we know that the sequendé’;. } is bounded.
N_1 Proposition 3.6: If assumptionsA0)-A3) hold, the system
Py(T): o = min { Z Lis(wy, o) Q)is uniformly obgerva}ble, anN. > No, then, for alli_o € Xo,
ERCS Ft N = MHE using the estimation algorithm is an asymptotically stable
/ observer for (4).
(2 {wn}) € 07 } Proof: F(ro)m the preceding arguments (see the proof of
ForT < N, P3(T) is defined to beP; (T). The solution to Proposition 3.4), it suffices to sholir is bounded uniformly
P3(T) is the pair forallk > 0 by [lzo—ol|. LetV = y(|lzo o) +T (&g x _,)-
. o _— Optimality guaranteeEkT;%_N Li(Wijoo, Vikjoo) > 97 for all
(Z 7{wk\T—1}k:TfN) T > N.Hence, byA3), we havel;, < V forallk > N.
i ~.0
and that optimal pair yields an estimgt}, ,, _, }{_r_y of the By construction, forl" > N, ZT—N(‘”TY—N\T_—l) S {JT—fV'
actual sequencgry }, where Because(:i;%_NlT_l,{wng_l}) € QF, optimality implies
o § " $7 < Up. Hence, the sequend®,} is bounded above by
Trlr—1 =71 (k>2 T —N, {wlefl}) : and, consequentlyz(T; zo,0) — &7|| — 0 asT — oo.

It follows thatz) = 7. We formulate the estimation strategy ag u\r{nvetirz)onv,XQ,e)StZ*b“ih t?ﬁw |s_bA01|J|r)1(;en% bg |$Ee_mfr?e|1| .ZBSy (é\j\iih
the following algorithm. p »Yn < [0 — Zo , by :

W, = {0}, Vi = {0}, and: =T — N)

Estimation Algorithm ||5;8|N_1 — wo|| <O(Y%)
Data N € N. .
< - :
Initialization: For T < N do: <0 (v(llzo = Zoll))
1. Solve P(T) to generate  {@;};_, and Hence, we obtain
{‘I’k}fc;r ) . )
2. Solve  P5(T) to obtain  igy_, and {y;}i ;. V <v(||wo — &) + 7 ( Fonv_1 — fo D
3. For k=1,...,N, set Ukqu,j—kl“(i:gw_l). X o )
Step 1 For T > N do: <v([lzo — Zoll) +7 (||170|N—1 = mol| + [lzo — $0||)
L Solve Py(I) to obtain  if_y,_, and vy. <o = o) + 7 (8 (7o — o) + ll20 = ol
)

2. Set Ur = ’l/);;l‘ Ur_n.

3. Construct  Zp_n(-) so that it satisfies =w(flwo = ol

ClL where¥(-) results from applying conditio€1) andw(-) is a
4. Set K-function. The existence of the K-functias(-) follows from
= 3-8 (20 (0 Y Fact 2.3. R O
frn ,812[%?] {/ y ( TN (@7 yir1) = P N) We desiredr = 1 whenZr(-) satisfies conditiorC2). If we

+éy_y < UT—N}- assume:(_k_; 20,0) € X;_C for all {c > 0, then optimality and the
observability assumption |mpky%_N‘T_1 = z(T — N;x0,0)
5. Set forall T > N and, as a consequendéy = 2T'(z). It follows
4 5 A A by optimality and conditiolC2) that forT > N
Zr_N(+) < Br—n (ZT—N(‘) - ‘I)T—N) + &N yop Y ) -

Zp(2Y =Zp(x(T — N; 0,0
2Adding a constant to the objective function does not affect the answer. For T(xT*MT*l) 7 (o 20, 0))
simplicity, we choose€€,(-) = 0 <2T'(xo).
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Therefore,6r = 1. When the constraints only satisA8) or Proof: By constructionUy — Ur_y < Nb andUr —
when we consider suboptimal algorithms, then the estimation aly < F(:i-glN_l) whereb := (6, + 6,,). Hence

gorithm does not guarant@e = 1 when the sequendeZ?(-)} X R

satisfies conditiorC2). To guarantegdr = 1, one can modify Nb+ F(£8|N_1) >0 — Op_n

the estimation algorithm (see [4]). T—1
> > L (o o).
k=T—-N

In this section, we investigate the stability properties of MHEgma 2 5 | consequently, states that the estimation error is
when the setXy, Wy, and V, are uniformly compact. We bounded as claimed. 0

demonstrate under these condition that the estimation error is
bounded. The bounds that we derive are conservative and no‘
constructive, though they illustrate the performance of MHE in

the presence of noise. Our arguments build on many of the re-
sults discussed in Sections | and II; for brevity, we freely make In this section, we demonstrate how inequality constraints im-

A. Bounded Disturbances

V. EXAMPLES OF INEQUALITY CONSTRAINTS YIELDING
IMPROVED ESTIMATES

use of those results. prove the state estimate when the disturbances are bounded. We
DO) There exists scalai, > 0, 6, > 0, andé, > 0 such first consider a linear example where we use the Kalman filter,
thatW,, ¢ Bs., Vi C Bs., Xy C Bs. forall k > 0. the unconstrained full information estimator, as a benchmark.

Throughout this section, we denote the dynamics of the trMée then consider a nonlinear example and use the extended
system by the sequencés; }, {w;}, and{v;}, where by as- Kalman filter (EKF) as a benchmark.

sumptionzy € Xo, zx € Xi, wp € Wy, anduy, € V,, for all Consider the following discrete-time system

k > 0. In other words, the dynamics of the true system obey the 0.99 0.9 0

constraints. Tht1 = [_'0 1 0'3} T + [J Wy,
Proposition 3.7: If the assumption&\0)-A3), the sequence ) '

{Z;(-)} satisfies condition€1) andC2), the system (1) is uni- g =[1 =3lax + vk (8)

formly observableN > N,, and the constraints satisfy con
dition DO), then the estimation errdjwr — 3t for MHE is
bounded for alll’ > N.

Proof: We assume throughout the proof that > V.
Proposition 3.3 guarantees a solution exists fokalt 0. Let
b := y(6w +6,). AssumptiorA2) and conditiorC1) guarantee,
forall T > N, that

‘We assumd vy} is sequence of independent, zero mean, nor-
mally distributed random variables with covariance 0.01, and
wy = |z| where{z, } is a sequence of independent, zero mean,
normally distributed random variables with unit covariance. We
also assume the initial statg is normally distributed with zero
mean and covariance equal to the identity.

We formulate the constrained estimation problem wijth=

T—1 1, R = 0.01,II; = 1, andzy = 0. For the MHE, we choose
or—dron > > Li (o oho,) - N = 10 and
k=T—-N ~

Zo(2) = (z = 27" (2 — 27" + &,

T

From the proof of Proposition 3.4, we know under the stated

assumptions that where the sequendél, } is obtained by solving the matrix Ric-
. cati (3). As stated previous, this choice for the approximate
Z(zr) > Z(z7) arrival cost satisfies conditioB2). To capture our knowledge
of the random sequenae;, we add the inequality constraint
for all 7' > 0. Optimality then implies wy, > 0. Note, this formulation yields theptimal Bayesian es-

timate. A comparison of the Kalman filter and MHE is shown
in Fig. 1. For a benchmark, we used the sum squre estimation
error

Tb+4(6:) > b

as optimality impliesby < Z(zr). As & is feasible for
problemP(T') for all sequenceuwy, vi } 1—r_ n € WN x VN, T . N2
. Lc . ) A0)
optimality implies Z T Ty
k=0

>dp — 4 .
Nb2®r = ®r-n wherez(?) denotes theth entry of the vector. For z(!), the

S Z I (uA)mh Hmhb ) . average sum square estir_nation error based on 100 trials was
= FATRIT=10 ThT—1 1194.45 for the Kalman filter and 36.08 for MHE. Fof?),
the average square estimation error was 131.15 for the Kalman
Lemma 2.5, consequently, states that the estimation erroffiier and 81.60 for MHE. As expected, the performance of the
bounded as claimed. [0 constrained estimators is superior to the Kalman filter, because
Corollary 3.8: If the assumption®0)-A3), system (1) is the constrained estimators possess, with the addition of the in-
uniformly observableN > N,, and the constraints satisfy con-equality constraints, the proper statistics of the disturbance se-
dition DO), then the estimation errdjz — 22b|| for the esti- quencew,. Hence, the constrained estimation problem formu-
mation algorithm is bounded for &l > N. lated above accurately models the random variakle
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Fig. 1. Comparison of estimators for model (8). Fig. 2. Comparison of estimators for model (9).
example, the average sum square estimation error for the

Kaiman filter based on 100 trials was 1149.10 fg#) and
126.04 forz(?). The average sum square estimation error for

To compare the performance of MHE and EKF, we consid
the following nonlinear perturbation of the model (8):

o), =0.992(" + 0.2 (9a) MHE based on 100 trials was 37.44 fo*) and 74.94 for:(?).
052 For the nonlinear example, the average sum square estimation
5171(3421 =— 0.13:,(:) + % + wy, (9b) error for the extended Kalman filter based on 100 trials was
1+ («2) 852.25 forz() and 93.63 forz(?). The average sum square
Yk :x,(cl) — 3x](€1) + V. (9¢c) estimation error for MHE based on 100 trials was 50.07 for

1 2
The disturbances are modeled as random variables with the, and 69.99 fou®). , ,
same distributions as the previous example. We formulate MHEAL eqch time step, the solution of the quadratlg program took
as above with the exception that the sequefitg} is obtained approximately a tenth of a second and the solution of the non-

using an extended Kalman filter update. A comparison of tH8€ar program took approximately 3 s on a desktop computer. A
EKF, unconstrained MHE (U-MHE), and MHE is shown insmgle realization involve 80 data points took approximately 10
q}g)r the linear example and 3 min for the nonlinear examples.

Fig. 2. Once again, the unconstrained EKF estimate diver : , i ,
while the MHE estimate is able to track the state. If we compafd'€ time required for either the Kalman filter or the extended
man filter was negligible. All computations were performed

constrained versus unconstrained MHE, then the conclusid
are similar: constraints are necessary for an accurate st&&NU Octave on a 500-MHz processor. No effort was made
estimate. Forz(1), the average sum square estimation errdp Improve the efficiency of either computation.
based on 100 trials was 888.97 for the EKF and 66.58 for MHE.
Forz(?), the average square estimation error was 97.66 for the
EKF and 76.83 for MHE. In this paper, we investigated MHE as an online optimization
We repeated both examples using bounded noise, whetetegy for estimating the state of constrained discrete-time
wy, = min{|z|,2}. The results were similar. For the linearsystems. The practical significance of MHE is the ability to

V. CONCLUSION
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incorporate constraints explicitly. This feature distinguishderalli € {T'— N,T — N + 1,...,T}. Likewise, assumption

MHE from other strategies such as extended Kalman filteris®R) implies

and output error linearization. Furthermore, if the estimation

problem translates into a problem of the fofn(7'), then we -1

believe MHE is a natural engineering approximation to the  ||@k7—_1]| <n~" ( > Lk(ﬁ)k|T1:@kT1)> (12a)

full information problem, because the structure of MHE is not k=T-N

dictated by stability, but rather by performance and practicality. T-1

Stability results if one judiciously approximates the past data. lloxr—1ll <n~* ( > Lk(ﬁ)lel:@le)> (12b)
One limitation of MHE is the need for global solutions to k=T-N

the optimization problem$>(7") and P5;(T"). This computa-

tional requirement presents a barrier to online implementatioihere the existence of K-functioyr (-) follows from Fact 2.2.

Aside from the computational burden, optimization may ndience

yield global solutions unless the problem is convex. Strategies i

exist for finding a global solution, though they are currently im- .~ _ ik —1

practical for online implementation. The difficulty in global op—”x’i — il < Z €

timization is not finding a solution, but rather verifying whether _—

a particular solution is global. Unless global information such as y Z Ly (4 5 )

lower bounds or Lipschitz constants are available, one needs to FATRIT—1) Tk|T—1

sample a dense subset of the decision space in order to guarantee TN

a particular solution is global [41}. In resullts not discussed hejfig i1 remaining steps of the proof, we demonstrate that the

[4], we propose a stable s_uboptlmal version qf MHE that do‘aﬁantitynfi — &, is bounded.

not require a global solution. This algorithm is similar to the By definition

suboptimal version of receding horizon control first proposed

k=T—-N

by Michalska and Mayne [42] and further developed in discrete T—1 T—1
time by Scokaert, Mayne, and Rawlings [43]. Z | 0e | = Z lhi(zr) — hi(21) + vi|.
The strength and weakness of MHE is the use of constrained , ‘7~ heTo N

optimization. For many systems, the optimization problems can
be solved in a few seconds on a desktop computer using standgydrepeated application of the inverse triangle inequality and

software such as Matlab. However, for some estimation prolilizing the observability condition, we obtain the inequality
lems, MHE is too slow. With the increasing power of computers

and improved algorithms (i.e algorithms now solve quadratic T-1
programs in polynomial time), MHE will become an alternative Z [On]] + [|vr |
for an expanding class of constrained state estimation problems k=T—N
in the near future. + [hr(2r) — il + |hr(2r) — x|
T-1
APPENDIX | > > 117k — il
k=T—-N
A. Proof of Lemma 2.5 > o(||Zr—n — Zr—nN|])-
Proof: Recall z; denotes the true state of (1). We now

make make the following definitions: By the Lipschitz continuity offx(-), we obtain the inequality

Ty, :=x(k; 2p_njr-1,1T — N) T-1

gr =y(k;2r_nr—1,T — N) |1Z: = Zill < (L+¢p) ' ( > Nkl + ol

k=T—-N

.Cf?k :.E(k TT—N, T— N)
gk ==y(k;zr-N,T — N)
k-1 i=he(r) + ok — by (Egr-n) where the existence of the K-functigir! () follows from Fact

=yr — h(Trjr-n)- 2.2. By the Lipschitz continuity of(-), (11a), and (12a), we
obtain the inequality

+Hhe(Zk) = Gell + |he(ze) — grll)  (13)

Employing the triangle inequality, we obtain the bound

s = il < ll& = @all + |7 — il + s — il (10) 4= =&
o o o . SoollE) —mll < Y Y ened ligroal
By the Lipschitz continuity offx(-), we have the inequalities 7= v J=T—N k=T—N
i—1 T-1 J

N _ i— k1 A -k _
i =zl < Y F bzl (11a) < > > ad Tt

k=T-N j=T—N k=T-N

T

k=T—-N

i1 “1
lzi — @l < Z C;_kHwkH (11b) X ( Lk(wk|T—1-/'l}k|T—1)> :
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Likewise, By the Lipschitz continuity dix(-), (11b), and (12b),
we obtain the inequality

T-1 T—1 J '
STl =gl < >0 > end) kel
k=T—-N j=T—N k=T—-N

Substituting into (13), we obtain the inequality

i — dil] <(14 )
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APPENDIX Il

A. Proof of Proposition 3.3

Proof: ForT" < N, existence is established by routine
application of the Weierstrass Maximum Theorem (see [4] for
the specific details). Now consid&r > N and let

T-1
(I)%1 = Z Lk(w“oo, vk|oo) + ZT—N(xT7N|OO)
k=T—N

denote the finite cost, by assumptioh2) and property
C1), associated with the feasible sequence_y., and
{wi)oo }1—1_ v SPecified in assumptioA3). Consider the set

A= {27 {wk}fg%_]v

(2 {wn)) € OF, dr(z, {wi ) < 81}

A solution exists under the stated assumption by application of
the Weierstrass Maximum Theorem if the getis bounded.
AssumptionA2) guarantees the sequentey,vi )7 iS
boundedi|w || + ||vx|| < 27~ (®L.). We conclude by demon-
strating z is bounded. If we employ the inverse triangle in-

Substituting the aforementioned expressions in (10), we obt&@uality, we obtain

the inequality

Iz = dril] <(1+ )’
1

T—
X (NU_1< > Lk(wkThﬁmTl))
K

“ToN
T—1 7
ot S
j=T—N k=T—N
T—1
X (77_1 ( Lk(wleaﬁHTl))
k=T—N
+5w))
T-—1
T—k —1
+ > e
k=T—N
T—1
><< Z Lk(ﬁikT—1,f1k|T—1)) -I-5w)-
k=T—N

Collectively defining the terms on the right hand side of the
inequality as a functioi(-), we obtain the following bound of

the estimation error:

lZ: — 4|

T-1
S grrw,crv <H <{ Z Lk(ﬂ)k|T17@kT1)} 7611;751:) H) -
k=T—-N

Facts 2.2 and 2.3 guarant@g) is K-function as it is a positive

linear combination and composition of the K-functiopis! (-)
andy ™', O

T—1 T-1
> Mokl =7 Mk — il
k=T—N T—N
T-1
2 Z 9% = Ykjooll = lYx — Ykjooll
k=T—N
where g, = y(k;z,T — N {w;}) and ypee =

y(k;27_Njso: T — N, {w |0 }). Rearranging the inequality, we
obtain

-1 T-1
Do ol +llve =l = - el + owee
k=T-N k=T—N
T-1
> > 1k = vrgeoll-
k=T—-N
If we employ again the inverse triangle inequality, we obtain
T-1
Z 19k — Yr)ooll
k=T—N
T-1
> S gk — y(kior—njee. T = N)|
k=T—-N
T-1
> > |y 2T = N) = y(k; 27— §joo, T = N)|
k=T—-N

T-1

—( > gk —y(ki 2,7 = N)|
k=T=N

+||yk|oo - y(k;xT—N|oo7T - N)H) .
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Rearranging the inequality and applying the observability asp7]
sumption, we obtain the inequality

T-1

> Wkjoo = ll + 19k — y(k; 2,7 = N)|
T—N

+ 1Ykjoo — Y(F; 21— Njoo: T — N)|
> o([|xr—Njoe — 2lI)-

(18]

[19]

[20]

The first quantityl|yx|. — 7 || is bounded, using the triangle in-

equality, by|[v|| + [|vxj0 || @nd, consequently, N7~ (d1).

(21]

To show the last two quantities are bounded, we employ assump-
tion AQ) to obtain the following inequality:

o [22]

gk = y(ks 2, T = N)| <en > e |fw

Likewise, we have the inequality
9o = y(ks 27N T= Nl < en Y It (8)).

Consequently, the quantityrr_ y|o — 2|| is bounded, and ex-
istence follows as claimed.

(1]

(2]
(3]

[4]

(5]

(6]

(71
(8]
[9]

(10]

(11]

[12]

(23]

[14]

[15]

[16]

J=T-N [23]
k—1 ) R
<en Y TNy ().
P [24]

[25]
k—1

j=T—

O
[28]
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